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1 Abstract

We demonstrate a modified Crank-Nicolson finite-difference diffusion algorithm for valuing
option-embedded bonds using the Hull-White model of the short rate process. In particular,
this method allows the practitioner to maintain model stability with relatively large values
of bond tenor even when inputting both relatively large values of the annualised short-rate
standard deviation and vanishingly small values of the mean reversion constant.

Indeed, typical finite-difference diffusion methods such as the fully explicit 3–1 and Crank-
Nicolson 3–3 algorithms are demonstrated here to be unstable for values of short-rate stan-
dard deviation, σ, and bond tenor, T , such that σ2T 3 > 3.6 and σ2T 3 > 17.1 respectively,
given sensible bond market tolerance requirements for the model’s accuracy. In what follows,
we show how the practitioner must modify these algorithms so that instability only occurs
above an arbitrary user-determined value of the product σ2T 3.

As a concrete example, using a short-rate standard deviation of two points, σ = 0.02,
the typical Crank-Nicolson algorithm does not accurately value bonds of tenor greater than
35 years if the number of modelling time steps is less than N ≈ 200. We then demonstrate
the general modifications one can make to the Crank-Nicolson algorithm in order to model
bonds of any short-rate deviation and any tenor.

Our principal result is that for practitioners valuing long-dated option-embedded bonds
in the Hull-White paradigm, modifying the diffusion algorithm, either fully-explicit or Crank-
Nicolson, to achieve the desired accuracy is unavoidable.

2 Introduction

Many bonds contain options that may take effect during the life of the bond. For example,
the issuer of a callable bond can prematurely terminate the bond by opting to prepay the
holder some prescribed amount of cash, the call amount, on some prescribed call date. In so
doing, the issuer settles (calls) their outstanding debt represented by that bond. A similar
type of option-embedded bond is a putable bond, in which the holder has the option to sell
back (put) the bond to the issuer at some predetermined put amount and put date.

The determination of whether to call or put a bond is highly sensitive to the present
interest rate environment, which changes over time due to market influences. Consequently,
these bonds are often priced using stochastic interest rate models. We will follow this trend
here.

In particular, in Section 3, we will set up the formalism of the Hull-White model[1] of
the interest rate curve in order to price interest-rate derivatives. A pricing equation, the
Hull-White equation, will be presented.

Section 4 then outlines a standard fully-explicit 3–1 finite-difference algorithm for a nu-
merical solution of the Hull-White equation. At the end of the section, we demonstrate that
this method is unstable, or stiff, for derivatives of large tenor.

In this paper, we will consider two types of instability for two-dimensional finite-difference
methods. The first, which we call instability due to stiffness, involves numerical solutions
that need unreasonably many time steps, ∆t, in order to maintain stability. (Note that the
word “stiff” is ambiguously defined in the community. Our usage will always refer instability
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due to the number of time steps being too large.) The second type, Von Neumann mode
instability, concerns the lattice spacing of finite-difference grids, ie the relationship between
∆t and the step size of the state variable, ∆x. Clearly the two types are intimately related
and, indeed, will be both analysed under one prescription, the standard Von Neumann mode
analysis. It is important to note, however, that stabilising Von Neumann modes does not
eliminate the stiffness problem – an additional analysis is necessary.

Accordingly, Section 5 presents the principal result of this work: a generalised Crank-
Nicolson method with a prescription for evaluating the weights of the finite-difference dif-
fusion operator. This generalisation is simply changing the standard 3–3 molecule of the
Crank-Nicolson method into an n–m molecule. (Note that fully-explicit methods, n–1, are a
subset.) As the molecule size increases, the number of weights increases, allowing the prop-
agation error on the grid to be increasingly fine-tuned. Because this fine-tuning turns out to
allow increasing accuracy for a given set of bond tenors and Hull-White input parameters,
the practitioner can then decide which generalised Crank-Nicolson method to use to meet a
required level of accuracy.

3 The Hull-White Model

This model is a stochastic, one-factor model of the interest rate curve, specified as a mean-
reverting short-rate process plus a deterministic term structure of forward curve changes for
each value of the short rate. The model takes the current curve of forward interest rates as
an input, together with two constants, the annualised short-rate standard deviation, σ, and
the mean reversion constant, k.

According to the Hull-White model, which is a simplified HJM model[3], derivatives
are priced as expectation values under the risk-neutral mean-reverting stochastic short-rate
process

dr =

(
df (t)

dt
+ ν2 (t)− k [r − f (t)]

)
dt + σdz (t) , (1)

where the function f (t) is the observed current forward curve of interest rates, the constant
k is the rate of mean reversion of the short rate, the constant σ is the annualised standard
deviation of the short-rate, and dz (t) is a Wiener process. The short rate mean-reverts to

f (t) + R (t) , (2)

where R (t) is defined by

∂R (t)

∂t
+ kR (t) = ν2 (t) , (3)

and ν2 (t) is given by[4]

ν2 (t) =
σ2

2k

(
1− e−2kt

)
. (4)

The meaning of Eqs (2) and (3) is that the short rate only approximately reverts to the
forward curve, f (t), up to a correction, R (t). This correction arises from the HJM[3]
methodology and is due to the arbitrage freedom constraint imposed on stochastic bond
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prices. Since bond prices are functions of the short rate, the arbitrage freedom constraint on
all zero-coupon bond prices of maturity T observed at time t ≤ T ,

dBT (t) = BT (t) rdt + ΣT (k, t, σ) BT (t) dz (t) , (5)

leads to an equivalent constraint on the short rate process. This constraint is not trivial
for two reasons. The first reason is the algebraic complexity of the transformation from a
stochastic price-change process for zero-coupon bonds of all maturities to a single stochastic
process for the short rate. The second is the application of Ito’s lemma to this transformation.
Heuristically, we may say the former complexity gives rise to a mean-reverting short-rate
process, and the latter gives rise to the term ν2 (t) in Eq (1), which ensures that the process
does not mean-revert precisely to the initially observed forward rates curve.

For simplicity, rewrite Eq (1) by letting

x ≡ r − f (t) ,

⇒ dx =
(
ν2 (t)− kx

)
dt + σdz (t) .

(6)

This new stochastic state variable, x, will be used for the remainder of this paper. It follows
that when valuing functions of x today (t = 0) it is necessary that x0 = 0 so that r0 = f (0).

From Eq (6), it follows that the pricing equation obeyed by all derivatives is[1, 3, 4, 5]

0 =
∂BT (t)

∂t
+

σ2

2

∂2BT (t)

∂x2
+

(
ν2 (t)− kx

) ∂BT (t)

∂x
− (x + f (t)) BT (t) . (7)

Given the boundary conditions of a zero-coupon bond, the closed-form solution to Eq (7)
represents a stochastic Hull-White zero-coupon bond :

BHW
T (x, t) = exp

{
−aT (t) x− bT (t)−

∫ T

t

ds f (s)

}
, (8)

where the functions aT (t) and bT (t) are given by

aT (t) =
1

k

(
1− e−k(T−t)

)
(9)

and

bT (t) =
1

2
ν2 (t) a2

T (t) . (10)

This solution describes a zero-coupon bond, or zero, that stochastically evolves from a known
price today, BHW

T (0, 0), to a known terminal payout, the bond’s par.
The analytic solution in Eq (8) is useful for boundary conditions of finite-difference grid

valuations of fixed-income derivatives. The payout curve of a callable bond, for example, will
asymptotically approach a value of a sum of Hull-White zeros as the value of x is further and
further away from the call strike in either direction. This is analogous to the deep-in-the-
money regime of a European equity call option, for which the payout value asymptotically
becomes the stock forward minus the strike forward.

To obtain the solution for a fixed-coupons bond with known coupons ci and par p, gen-
eralise Eq (8) in the obvious way:

Bfixed
T (x, t) =

T∑
ti≥t

ciB
HW
ti

(x, t) + pBHW
T (x, t) . (11)
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4 Solving the Pricing Equation Using a Fully Explicit

Diffusion Operator

After some preliminary remarks, Section (4.2) presents a transformation of the Hull-White
pricing equation, Eq (7), to the heat equation.

In Section (4.3), we outline an algorithm for a numerical solution of the heat equation
in order to introduce the machinery and the main concepts of this work. For simplicity, we
work through the example of the standard fully explicit 3–1 finite-difference method.

In Section (4.4), the standard convergence and stability analysis of Von Neumann[6] will
be applied for optimisation. It turns out that ensuring fast convergence using Von Neumann
stability analysis is equivalent to matching as many moments as possible of the distribution
propagated on our finite-difference lattice to those of the Hull-White distribution. This will
be investigated by propagating Hull-White zeros on the lattice. Furthermore, we demonstrate
that even after ensuring Von Neumann stability for the 3–1 diffusion, the algorithm still
contains a remarkable instability due to stiffness. This stiffness instability can be measured
by the product σ2 T 3, where σ is the annualised volatility of the short rate and T is the tenor
of the Hull-White zero bond that is numerically propagated.

4.1 Preamble

For the sake of simple comparison, consider equity options numerically modelled over a nor-
mal distribution of stock-returns using a fully explicit 3–1 finite-difference diffusion. Conver-
gence of such numerical solutions, as the number of time steps increases, may be achieved by
enforcing that the first three moments of the stock-price distribution – cash forwards, stock
forwards, and stock-squared forwards (to fix volatility) – are all propagated on the lattice
identically to the exact continuous solutions. These three constraints fix the three weights of
the diffusion operator. This choice of values for the weights is sometimes called superweights.
It guarantees that the in-the-money- (ITM) and out-of-the-money (OTM) numerical results
are exact irrespective of the number of time steps – as long as the ITM and OTM forms are
linear combinations of these moments, as is usually the case. The central limit theorem then
ensures that all higher moments are numerically approximated, with accuracy increasing as
the number of time steps. This, in turn, ensures convergence to the correct answer with
increasing number of time steps.

Specifically, the equity option pricing model is the expectation value under the risk-
neutral process described by

dxS =

(
r$ − rS −

1

2
σ2

S

)
dt + σSdzS(t) , (12)

where

St = S0e
xS , (13)

r$ = instantaneous, risk-less rate , (14)

rS = stock-borrow/loan-fee rate , (15)

σS = stock volatility . (16)
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The superweights are determined by ensuring that the following three analytic solutions of
the pricing equation, the Black-Scholes-Merton equation, are numerically propagated exactly
over every time step on our lattice:

zeroth moment: cash Ke−r
$
(T−t) , (17)

first moment: stock Ste
−r

$
(T−t)e(r

$
−rS)(T−t) , (18)

second moment: stock-squared S2
t e
−r

$
(T−t)e(2r

$
−2rS+σ2

S)(T−t) . (19)

By contrast, the collection of zero coupon bonds of all maturities in the Hull-White
model,

BHW
T (x, t) = exp

{
−aT (t) x− bT (t)−

∫ T

t

ds f (s)

}
, (8)

aT (t) =
1

k

(
1− e−k(T−t)

)
, (9)

bT (t) =
1

2
ν2 (t) a2

T (t) . (10)

may be viewed as forming a continuous set of moments,

BHW
T (x, t) ≈ e−aT (t)x ∼ SaT (t) , (20)

S = e−x . (21)

Thus, without singling out any particular maturities (moments) we can only hope, at best,
to make many – if not all – moments propagate on the lattice approximately correctly.

The stability and convergence of numerical solutions are properly investigated using von
Neumann stability mode analysis. Applying this analysis to the numerical pricing of equity
derivatives using superweights results in a constraint on the sizes of temporal- and state-
variable (ie stock-return) grid steps.

In the Hull-White model we have an analogous situation. A relationship between temporal-
and state variable intervals in the lattice is still an important result of the stability analysis.
In this case, luckily, the analysis of the propagation of Fourier modes, parametrised by p

eipx (22)

on the lattice, per the Von Neumann stability analysis recipe, is equivalent to an analysis of
the propagation of Hull-White zeros of arbitrary maturity, ie

eipx ∼ e−aT (t)x . (23)

Explicitly, one examines the properties of numerical propagation of a Hull-White zero of
arbitrary tenor across one time step, ie one application of the diffusion operator, and matches
the result to the desired analytic result. The way one performs this matching is by Taylor
expanding the ratio of the numerical result and the analytic formula of the Hull-White zero,
Eq (8). This analysis is precisely equivalent to the prescription of Von Neumann, which

6



requires an analysis of the amplitude of numerically propagated Fourier modes. The natural
parameter of this expansion is

aT (t) ∆x , (24)

where ∆x is the grid spacing of the state variable, x, defined in Eq (6). This expansion
parameter corresponds to

p∆x , (25)

which is the natural parameter of the Von Neumann analysis. To see this equivalence, one
needs to consider the propagation of Fourier modes on the lattice, and then compare these
to the exact Fourier mode propagation. Luckily however, if one allows the function aT (t) to
take complex values, the Hull-White solution itself describes propagation of a Fourier mode.
We then compare this to the result of one application of the numerical diffusion operator,

eΦ(t)numerical × eipx ,

eΦ(t)numerical = numerical amplification factor .
(26)

The expansion parameter, aT (t) ∆x, which, heuristically, we may think of as T∆x, turns
out to demonstrate that the stability expansion parameter is

σ aT (t)

√
T

N
, (27)

where
T = tenor , N = number of (uniform) time steps . (28)

This analysis is detailed explicitly below. The principal result is that as k → 0 (see Eq
(9) for aT (t) above), very large tenor zeros correspond to high-frequency modes which do
not necessarily accurately propagate on a finite-difference lattice. The only way that we
can ensure fast convergence to a pre-specified accuracy for all values of k – particularly very
small values – is to match higher and higher order Taylor terms, ie moments of the numerical
distribution, and this can only be done by increasing the number of weights in the diffusion
operator. This takes us from the 3–1 fully explicit method to 3–3 Crank-Nicolson and on to
5–3, 5–5, 7–1, 7–3 molecules, etc.

More importantly, when modelling option-embedded bonds – our ultimate goal – the
kinks in the bond’s payout curve caused by optionality also introduce high-frequency modes,
regardless of the input value of k. This again forces us to consider diffusion methods of larger
molecules.

Finally, we note, as an aside, that one can accurately propagate a large tenor zero bond
using, say, the 3–1 fully explicit method by selecting a large enough value of the mean-
reversion constant k. This has the effect of dampening the error terms that cause instability
(see Section (4.4.2), Eq (77)). The large k technique is useless, however, since it corresponds
to a reversion speed that approaches infinity as the tenor increases. Clearly, in order to
sensibly evaluate large tenor bonds, the numerical algorithm must change, not the input
values.
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4.2 Transformation from the Hull-White Equation to the Heat
Equation

In order to obtain the heat equation from the Hull-White pricing equation, begin with the
transformation

BT (x, t) = XT (x, t) BHW
T ∗ (x, t) . (29)

Here, the function XT (x, t) is parametrised by the bond’s maturity T , and the multiplicative
Hull-White zero BHW

T ∗ (x, t) has a different maturity T ∗, which is taken to be a free parameter.
We will use this transformation to implement a fully explicit finite-difference method, and
we will choose this free parameter to be the grid time-step end, T ∗ = tend. Note that this
choice effectively means we are using a different transformation for each time step. While
this might seem unnecessarily complicated, it actually greatly simplifies the analysis of the
properties of the numerical solutions.

Proceeding with the transformation to the heat equation, plug Eq (29) into Eq (7) and
simplify to get a differential equation in XT :

0 =
∂XT (x, t)

∂t
+

(
ν2 (t)− kx− σ2aT ∗(t)

) ∂XT (x, t)

∂x
+

σ2

2

∂2XT (x, t)

∂x2
. (30)

Making the variable transformation

t = ty (31)

x = gT ∗(ty) y + hT ∗(ty) (32)

⇒ XT (x, t)→ X̂T (y, ty) , (33)

leads us to the heat equation,

0 =
X̂T (y, ty)

∂ty
+

σ2

2g2
T ∗(ty)

∂2X̂T (y, ty)

∂y2
, (34)

where the functions gT ∗(ty) and hT ∗(ty) must satisfy

gT ∗(ty) =
1

1− kaT ∗(t)
, (35)

hT ∗(ty) = −aT ∗(ty) ν2 (ty) . (36)

with ν2 (ty) and aT ∗(ty) given in Eqs (4) and (9), respectively.
The instantaneous variance,

Σ2 (ty) dty ≡ σ2

g2
T ∗(ty)

dty , (37)

is for the variance of a normal distribution. As such – looking forward to the finite-difference
methods – we will choose our grid mesh in the (y, ty)-coordinates to be uniform in y (but
not necessarily in ty) in order to guarantee convergence to a normal distribution over y by
way of the central limit theorem.
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We then demonstrate a numerical solution to this heat equation, Eq (34), in its local
coordinates, (y, ty), by using a fully explicit finite-difference method. Note however, after
every time step we revert back to the global (x, t)-coordinates in order to get the bond’s
pricing curve at that time.

This time-step dependent variable transformation is convenient for three reasons: First,
we have the bond’s price curve in its “natural coordinates” so that we may test embedded
call- or put options easily. Second, reverting to the natural coordinates at each step allows
us to inspect the evolving bond curve (by graphing it, for example) which greatly simplifies
implementation and diagnosis of the model. Third, this algorithm is bond specification
independent and allows us to easily make observations about the properties of the diffusion
operator, ie using Von Neumann stability analysis, that are derivative-contract independent.

4.3 A Numerical Solution of the Heat Equation

We are now in a position to solve Eq (34) with the fully explicit 3–1 finite-difference method.
The general method will be to start our solution algorithm at the known payout of an
interest-rate derivative and diffuse – iteratively move backwards one time step at a time –
back to today’s value.

This method hinges on the analysis of the properties of a numerical diffusion operator
for each time step. Hence, suppose that ti+1 = tend is the end of a time step that is midway
through the diffusion process. At this time, we have a uniform set of x values, xj

i+1, also
called a vector or a slide. Over this slide there is a discretised derivative price curve,

BT

(
xj, ti+1

)
= Bj

T, i+1 , (38)

that satisfies Eq (7). We now proceed to find the numerical solution at ti = tstart.
At the beginning of the time step algorithm (and away from the boundaries, which we

will address later), we have that

ti+1 = tend , (39)

Xj
i+1 = Bj

T, i+1 , (40)

yj
i+1 = xj

i+1 , (41)

X̂j
i+1 = Xj

i+1 . (42)

In other words, at tend we map the natural coordinates (x, t) identically onto the local
coordinates (y, ty), hence Eqs (39) and (41). Also at tend, the transformation in Eq (29)
yields

BT (x, tend) = XT (x, tend) BHW
tend

(x, tend) = XT (x, tend) , (43)

which leads to Eq (40). Switching Eq (40) to the local coordinates leads to Eq (42).
At the end of the algorithm time step (ie at the chronological beginning of the time step)
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we have that

ti = tstart , (44)

X̂j
i = pj+1X̂j+1

i+1 + pjX̂j
i+1 + pj−1X̂j−1

i+1 (the p’s are weights) , (45)

yj
i = yj

i+1 , (46)

xj
i = gi+1, i y

j
i + hi+1,i

(
gtend

(tstart) = gi+1, i , etc; see Eqs (9) & (10)
)

, (47)

Xj
i ←−

x←y
X̂j

i , (48)

Bj
i = Xj

i BHW, j
i+1, i

(
BHW

tend

(
xj, tstart

)
= BHW,j

i+1, i ; see Eq (8)
)

. (49)

The three p’s are the weights of the 3–1 finite-difference diffusion process. They are chosen
by imposing convergence and stability on the solution – which leads to the familiar choice
of[5, 6, 7],

(
pj+1, pj, pj−1

)
=

(
1

6
,

2

3
,

1

6

)
. (50)

Section 4.4.2 will explore the derivation of these weights and their associated stability prop-
erties in detail.

Note that at the algorithmic beginning of each time step, we start with a uniformly
spaced set of x’s. Next, the procedure defines a local set of uniform y’s (see Eq (41)) and
then diffuses along these to tstart, where the result is then transformed back to the global
coordinate x. At the algorithmic end of the time step, plots of x versus t and y versus t
would look like Figure 1. (For the plots, tend − tstart = 10 years, σ = 10%, and k = 0.1.
These values were chosen to emphasise the differences between the x and y coordinates.)
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Figure 1: x-coordinate drift for one time step.

Clearly, at the algorithmic end of the time step, the values of the xstart’s are still uniformly
spaced. But in order to iterate the diffusion process, the grid spacing needs to be optimised
according to a stability analysis (see Section 4.4 below). With the stability condition on the
grid spacing known, we can simply repartition the x slide to have the proper spacing. This
repartitioning will clearly require interpolation into the slide to construct a new slide. As an
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aside, it is also the case that the practitioner may need to re-centre the slide anyway, and so
this interpolation is not extraneous. (Grid re-centring is often done near to gamma-source
kinks that are caused by optionality[5]. See next paragraph.)

The last thing to mention about the algorithm is the boundary conditions. Firstly, we
use analytic Hull-White bond prices at the boundaries. This is indeed possible if the slides
are big enough. The size of the slides is determined by the required accuracy tolerance of
the practitioner and will be a certain multiple of standard deviations on either side of all
future gamma sources. Secondly, we implement American-style choices by maximising or
minimising the various optionality embedded in the derivative. It is known that numerical
accuracy can be improved by carefully offsetting grid points from the kinks, or gamma
sources, introduced by these choices[5].

4.4 Von Neumann Stability Analysis and Stiffness

In the above sections, we mentioned several times that uniform spacing of the coordinates at
algorithm time tend depends on a stability condition. In this section, we will briefly analyse
the stability for the 3–1 diffusion algorithm given in the previous section. In Section 4.4.1
we focus on the simple heat equation, and in Section 4.4.2, we extend the analysis to the
Hull-White equation. Moreover, we introduce and describe the stiffness instability of the
3–1 diffusion algorithm.

4.4.1 Stability of the 3–1 Solution of the Heat Equation

Recall our heat equation of Section (4):

0 =
X̂T (y, ty)

∂ty
+

Σ2 (ty)

2

∂2X̂T (y, ty)

∂y2
. (34)

In an approximate discrete form, with (y, ty)-space labelled by (j, i), this becomes

0 ≈ X̂j
T, i+1 − X̂j

T, i

∆t
+

(Σ2)
j
i+1

2

(
X̂j+1

T, i+1 − 2X̂j
T, i+1 + X̂j−1

T, i+1

(∆y)2

)
. (51)

The ∆t and ∆y define the grid spacing for the lattice. The above can be written as

X̂j
i ≈ p̂j+1X̂j+1

T, i+1 + p̂jX̂j
T, i+1 + p̂j−1X̂j−1

T, i+1 , (52)

where the p̂’s are the finite-difference weights in the (y, ty)-space and are given by

p̂j+1 = p̂j−1 =
(Σ2)

j
i+1

2

∆t

(∆y)2 ,

p̂j = 1− p̂j+1 − p̂j−1 .

(53)

Given a set of boundary conditions, Eq (52) generates an explicit-method, iterative algorithm
for diffusing backwards in time from ti+1 = tend to obtain a numerical solution to the heat
equation at ti = tstart.
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It is well known[6] that the lattice intervals ∆t and ∆y cannot be independent of one
another – they must satisfy a stability condition. In fact, it can be shown by Von Neumann
stability analysis[6], along with a convergence optimisation[5], that the ratio of the local
variance to the squared interval (∆y)2 optimally satisfies

(Σ2)
j
i+1 ∆t

(∆y)2 =
1

3
. (54)

The above can be obtained by propagating a Fourier mode, exp (ipyj), of mode number
p, along the lattice. Stability is guaranteed if the mode propagates with an amplitude of
modulus less than one, which leads to

(Σ2)
j
i+1 ∆t

(∆y)2 <
1

2
. (55)

A further requirement that as ∆y → 0, the propagation amplitude converges to the Fourier
transform of a Gaussian distribution, yields[5] Eq (54). With the above stability condition
in Eq (54), the weights take their familiar form,

(
p̂j+1, p̂j, p̂j−1

)
=

(
1

6
,

2

3
,

1

6

)
. (56)

4.4.2 Stability of the 3–1 Solution of the Hull-White Equation

It turns out, rather remarkably, that a similar “mode analysis” can be done to test solutions
of our pricing equation,

0 =
∂BT (t)

∂t
+

(
ν2 (t)− kx

) ∂BT (t)

∂x
+

σ2

2

∂2BT (t)

∂x2
− (x + f (t)) BT (t) . (7)

In this case, however, the “mode” to be tested is the Hull-White zero,

BHW
T (x, t) = exp

{
−aT (t) x− bT (t)−

∫ T

t

ds f (s)

}
, (8)

of “mode number”
p = iaT (t)

(
i =
√−1

)
, (57)

and of maturity T .
Using the transformations of Eqs (29), (31) and (32), the finite-difference algorithm of

Eq (52) can be converted into a finite-difference algorithm for the full differential equation.
With (j, i) now labelling the “natural coordinates” (x, t), the 3–1 finite-difference version of
Eq (7) becomes

Bj
T, i ≈

(
pj+1Bj+1

T, i+1 + pjBj
T, i+1 + pj−1Bj−1

T, i+1

)
BHW, j

i+1, i , (58)

where, as before, the discrete Hull-White zero over the time step is given by

BHW, j
i+1, i = BHW

tend

(
xj, tstart

)
. (59)
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The goal will be to determine both the weights and the stability condition for the lattice
spacing. As we will see, and perhaps not surprisingly, the weights and stability condition will
be the same as for the heat equation. Nevertheless, the method is still instructive, as we will
then use it to find weights and stability for “larger molecule” algorithms, eg 7–3 diffusion.

Furthermore, this technique will automatically introduce a further stability condition that
is in addition to Eq (54). As we will show, the maturity T above is not entirely arbitrary. Of
course, it will be equal to the bond maturity or option expiration of the particular derivative
that one wants to model. More importantly, however, this maturity will be subject to a
stability condition that will relate it to the input short-rate volatility σ of Eq (1).

Proceeding with the Hull-White mode analysis, we insert a Hull-White zero, Eq (8), into
Eq (58) to obtain

e−aT (ti)xj
i−bT (ti) ≈ e−aT (ti+1)xj

i+1−bT (ti+1) × e−ai+1(ti)xj
i+1−bi+1(ti)

×
(
pj+1e−aT (ti+1)∆xi+1 + pj + pj−1e+aT (ti+1)∆xi+1

)
.

(60)

A few comments are needed about the above equation. First, since the integrated forward
rates curve, ∫ T

t

ds f (s) , (61)

does not depend on x or σ, we have dropped it from the analysis without a loss of generality.
This is equivalent to having a constant forward rate over the time step. Thus, we are
effectively propagating the “mode”

e−aT (t)x−bT (t) . (62)

Second, recall that, because of Eq (32) and Figure (1), the grid spacing in x is not
constant over a time step. For this reason, the x’s in the above expression are given time
labels, the superscript i’s.

Third, notice that there are two Hull-White zeros on the right-hand side of the equation.
The first, of maturity T , is the Hull-White mode that is being propagated to probe stability.
The second, of maturity ti+1 = tend, is the time-step discount factor of transformation Eq
(29), with T ∗ = tend.

The next step in the analysis is to write everything on the right-hand side of Eq (60) in
terms of ti = tstart and xi. To do this, recall that at tend, the local y variable was defined so
that

xend = yend . (63)

Using that along with Eq (32) and

ti+1 = ti + ∆t , (64)

we can find a relationship between xend = xi+1 and xstart = xi:

xj
i+1 = xj

ie
−k∆t +

σ2e−k∆t

2k2

(
1− e−k∆t

) (
1− e−2kti

)
. (65)
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A further substitution to the right-hand side of Eq (60) comes from the stability condition

for the standard deviation and the squared interval
(
xi+1

)2
. First, the average standard

deviation over the time step is found to be, using Eq (37),

Σ2
avg∆t =

∫ ty=tend

ty=tstart

dty
σ2

g2
tend

(ty)
=

σ2

2k

(
1− e−2k∆t

)
. (66)

By requiring that this standard deviation has a to-be-determined stability condition,

Σ2
avg∆t

(∆xend)
2 = Π , (67)

we obtain (
∆xj

i+1

)2
=

σ2

2kΠ

(
1− e−2k∆t

)
. (68)

Finally, inserting Eqs (64), (65), and (68) into the right-hand side (RHS) of Eq (60), and
expanding about ∆t = 0, we find that (with the assistance of MapleTM 11)

RHS ≈ e−aT (ti)xj
i−bT (ti)

(
1 + ε 1

2
(∆t)

1
2 + ε1 (∆t)1 + ε 3

2
(∆t)

3
2 + ε2 (∆t)2 + ...

)
, (69)

where the coefficients εn are error terms and are functions of everything,

εn = εn

(
p’s, Π, σ2, k, xstart, tstart, T

)
. (70)

Using Eq (69), rewrite Eq (60) as

0 ≈ ε 1
2
(∆t)

1
2 + ε1 (∆t)1 + ε 3

2
(∆t)

3
2 + ε2 (∆t)2 + ... . (71)

Imposing normalised, centred weights,

pj = 1− pj+1 − pj−1 , (72)

pj+1 = pj−1 , (73)

in Eq (71) eliminates the error terms of fractional power and greatly simplifies the remaining
ones. Normalised, centred weights are fundamental to the analysis presented in this paper
and always eliminate error terms in fractional powers of the expansion parameter, labelled
above using a fraction in the subscript. These terms are then effectively dropped.

After the substitution of normalised centred weights, one sees that the choice

pj+1 = pj−1 =
1

2
Π , (74)

eliminates the first error term, ε1. Subsequently, one also sees that the choice

Π =
1

3
, (75)
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eliminates the second term, ε2. Thus, we recover the same weights and stability condition
as we had for the heat equation:

(
Π; pj+1, pj, pj−1

)
=

(
1

3
;

1

6
,

2

3
,

1

6

)
. (76)

Furthermore, with the Von Neumann stability and the weights given as in Eq (76), the
third error term becomes

ε3 (∆t)3 = − 1

120
(σ aT(ti))

6 (∆t)3 , (77)

where, from before,

aT (t) =
1

k

(
1− e−k(T−t)

)
. (9)

This is the leading proportional error that is added to the Hull-White model after each
algorithmic time step. Note that, because of the dependence on aT (t), each successive error
term grows as the algorithm steps back to today. For N steps from maturity to today, the
cumulative error of the model, E, is

E ≈ − 1

120

N∑
i=1

(σ aT(tN−i))
6 (∆tN−i)

3 + O
(
(∆t)4) ,

tN = T , tN−i = tN−i+1 −∆tN−1 , t0 = 0 (today) ,

(78)

where the ∆ti are the (possibly varying) algorithmic time steps.
By inspection, the maximum value of aT (t) is the maturity T . It follows that as we

diffuse back to today, the magnitude of the time-step error, Eq (77), has the upper bound

∣∣ε3 (∆t)3
∣∣ =

1

120
(σ aT(ti))

6 (∆t)3 ≤ 1

120
(σ T )6 (∆t)3 , (79)

After N steps of uniform time step

∆t =
T

N
, (80)

the upper bound of the cumulative error is

|E|3−1 =
N

120
(σ T )6 (∆t)3 =

N

120

(
σ2 T 3

N

)3

. (81)

Considering the value of N as fixed (ie not directly chosen by the user of the model) it
is clear that the product σ2 T 3 is a measure of the the model’s stiffness. In other words,
even if the model has Von Neumann stability, as the above does, it is still possible to have
model instability if σ2 T 3 is too large. In fact, it can be shown (see Section 5.1, for example)
that for a diffusion algorithm using a molecule of size n–m, the maximum cumulative error
boundary will have the form

|E|n−m = αn−mN

(
σ2 T 3

N

)βn−m

,

αn−m = numerical coefficient of Taylor expansion ,

βn−m = power of Taylor expansion .

(82)
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Therefore, the product σ2 T 3 is the relative stiffness measure for all molecules being used to
diffuse Hull-White zeros. Note that it is not an absolute measure of stiffness since the error
boundary for each n–m molecule is also sensitive to the coefficient αn−m. Molecules with a
smaller coefficient can withstand a larger value of σ2 T 3.

As a specific example of stiffness, we model a bond of maturity T = 50 years using even
time steps of ∆t = 0.25 years – not an unusual case. Clearly, we cannot arbitrarily choose
the short rate volatility σ. In fact, choosing the short rate volatility to be two hundred basis
points (large but not unreasonable),

σ = 0.02 , (83)

causes the upper bound of the cumulative error to be

|E| ≈ 2.6× 10−2 , (84)

which is unacceptably large. Clearly, this value of the volatility allows the model to only
handle bonds of much shorter tenor. If we choose to have a zero bond model with a maximum
cumulative error bound of

|E| ≤ 10−5 , (85)

for example, then the 3–1 diffusion with the above rates volatility and time steps (σ = 0.02,
N = 200) can at most model zeros with tenor

T ≈ 20.8 years , (86)

as one can see in Figure 2.
If we allow both the tenor and the volatility to vary, but keep the number of time steps

and the desired maximum error bound the same, then we find that the 3–1 molecule works
in the regime

σ2 T 3 ≤ 3.6 . (87)

Alternatively one can vary the number of time steps. In order to model a zero of tenor
T = 50 years with a short-rate volatility σ = 0.02, one would need to use a rather large
number of time steps,

N ≈ 10200 . (88)

Clearly this model would be too computationally slow to get the desired accuracy – it is
too stiff to be practical. Accordingly, the 3–1 diffusion fails to efficiently model long-dated
bonds when the volatility is large.

5 Diffusion Operators with More Weights

From the above mode analysis, it is clear that basic 3–1 diffusion is simply not robust
enough to model long-dated bonds with a relatively large standard deviation of the short
rate. To overcome this limitation, we will generalise these results to any type of n–m diffusion
algorithm in this section.

In particular, we will see that 7–1 fully explicit diffusion and 7–3 modified Crank-Nicolson
diffusion have excellent convergence and stability properties and allow rather large input
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Figure 2: Upper bound of the 3–1 diffusion cumulative error magnitude versus tenor, with
σ = 0.02 and N = 200 time steps.

values for the standard deviation of the Hull-White model. Put another way, most “lesser”
algorithms (eg: 3–1, 3–3, 6–1) have errors that blow up for large but reasonable standard
deviation inputs.

As a specific example, our goal might be to find the diffusion molecule that allows us to
model a bond with parameters

σ = 0.02 , T = 50 years , (89)

such that for 200 uniform times steps, the upper bound of the cumulative error’s magnitude
is

|E| ≤ 10−5 . (90)

If we can constrain the upper bound of the error for this rather restrictive situation then we
have confidence in the model for larger N or smaller σ.

5.1 Von Neumann Analysis and Stiffness for n–m Diffusion

Before proceeding to the larger molecules, first note that fully implicit finite difference dif-
fusion methods, ie 1–3, 2–4, etc, produce the exact same error structure as the fully explicit
methods. Therefore, we will restrict our development to fully explicit methods, ie 3–1, 5–1,
etc, and (modified) Crank-Nicolson methods, ie 3–3, 4–2, etc.

The general method for n–m diffusion methods is just a simple generalisation of the 3–1
method outlined in Section 4.4.2. Recall that in that case, we analysed Eq (60),

e−aT (ti)xj
i−bT (ti) ≈ e−aT (ti+1)xj

i+1−bT (ti+1) × e−ai+1(ti)xj
i+1−bi+1(ti)

×
(
pj+1e−aT (ti+1)∆xi+1 + pj + pj−1e+aT (ti+1)∆xi+1

)
,

(60)

which is the 3–1 diffusion of the Hull-White “mode” (zeros of all maturities),

e−aT (t)x−bT (t) . (91)
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To generalise, simply insert the appropriate weight terms on both sides of Eq (60). For
example, the standard 3–3 Crank-Nicolson diffusion would be

e−aT (ti)xj
i−bT (ti) ×

(
qj+1e−aT (ti)∆xi + qj + qj−1e+aT (ti)∆xi

)

≈
e−aT (ti+1)xj

i+1−bT (ti+1) × e−ai+1(ti)xj
i+1−bi+1(ti)

×
(
pj+1e−aT (ti+1)∆xi+1 + pj + pj−1e+aT (ti+1)∆xi+1

)
,

(92)

where the q’s are the weights at ti = tstart and, as before, the p’s are the weights at ti+1 = tend.
To simplify the discussion, rewrite Eq (92) as

LHS (ti) ≈ RHS (ti+1) . (93)

Then, as in Section 4.4.2, use Eqs (64), (65), and (68),

ti+1 = ti + ∆t , (64)

xj
i+1 = xj

ie
−k∆t +

σ2e−k∆t

2k2

(
1− e−k∆t

) (
1− e−2kti

)
, (65)

(
∆xj

i+1

)2
=

σ2

2kΠ

(
1− e−2k∆t

)
, (68)

to rewrite all of the functions in RHS (ti+1) in terms of ti and xi. After a bit of algebra
(using MapleTM 11) we find that

RHS (ti+1)

LHS (ti)
− 1 ≈ ε 1

2
(∆t)

1
2 + ε1 (∆t)1 + ε 3

2
(∆t)

3
2 + ε2 (∆t)2 + ... (94)

As before, choosing normalised and centred weights,

pj = 1− pj+1 − pj−1 , (95)

qj = 1− qj+1 − qj−1 , (96)

pj+1 = pj−1 , qj+1 = qj−1 , (97)

eliminates the error terms of fractional power and simplifies the others. Then, successively
setting

ε1, ε2, ε3 = 0 , (98)

allows us to determine all of the weights and the stability condition on the lattice. For
illustration, they are

Π ≈ 0.45 , (99)

pj ≈ 0.61 , (100)

pj+1 = pj−1 ≈ 0.20 , (101)

qj ≈ 1.06 , (102)

qj+1 = qj−1 ≈ −0.03 . (103)
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Subsequently, the magnitude of the leading error term of one time step becomes

|ε4| ≈
(
9.2× 10−4

) (
σaT (t)

)8
(∆t)4 ≤ (

9.2× 10−4
)
(σT )8 (∆t)4 . (104)

For our test case with

σ = 0.02 , T = 50 years , |E| ≤ 10−5 , N = 200 , ∆t =
T

N
, (105)

we find that the 3–3 diffusion fails since

|E|3−3 ≈
(
9.2× 10−4

)
N

(
σ2 T 3

N

)4

≈ 7.2× 10−4 . (106)

In fact, all else being the same, the 3–3 molecule can only model bonds of tenor

T ≈ 35.0 years . (107)

(In other words, the regime of (σ, T ) is σ2 T 3 ≤ 17.2.)
Carrying on in this manner, we find that the 7–1 and 7–3 molecules satisfy our require-

ments since

|E|7−1 ≈ 1.6× 10−6 , (108)

|E|7−3 ≈ 1.4× 10−8 . (109)

This can be easily seen in Figure 3.
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Figure 3: Error bounds for various molecules with σ = 0.02 and N=200 time steps. From
left to right at the top: 3–1, 4–3, 3–3, 5–3, 6–1, 5–2, 5–5, 7–1, 7–3.

A few comments are needed about Figure 3. First, there are clearly many possible
molecules that one could experiment with. We have just plotted a selection to capture the
essence of how the cumulative error bounds grow with tenor, T .
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Second, note that the error bounds for the 5–3 and 6–1 molecules cross one another as
T increases. This is a common feature of these error bounds. Their positions relative to
one another are highly dependent on the input short-rate volatility σ, the number of time
steps N , and the desired maximum error (1× 10−5 for this case). Changing any one of these
values, ie adjusting the model’s performance threshold, causes the arrangement order of the
bounds to change, and some may even cross through one another.

Third, there are a few molecules, namely 4–1, 5–1, 6–2, etc, that we have purposely
omitted from this plot because of their anomalous stability behaviour. Recall that one uses
Von Neumann stability analysis to find both the set of diffusion weights and the value of Π,
which represents optimised diffusion stability. (See the examples of 3–1 and 3–3 diffusion
above.) The values of Π are usually found by finding the positive real roots that solve
a polynomial equation. The optimal root is the one that minimises the error term of the
diffusion. But, when performing the same stability analysis on the 5–1 diffusion, for example,
one finds that there are no positive real roots for Π. In this case, one has to find a minimum
positive value that minimises the error term. Note that this value need not be the global
minimum. Also note that we have not observed any molecules with this anomalous error
feature above the the n–2 set of molecules, though larger molecules with this type of error
may exist. Moreover, the 2–2 molecule in particular has the curious feature of having no
dependence on Π and is very unstable. See Table 1 below for a collection of all molecules
used and omitted.

Fourth, from the graph, one sees that the 5–5 molecule also meets our modelling require-
ment, and in fact,

|E|5−5 ≈ 3.5× 10−6 . (110)

Certainly, there are many other molecules that also satisfy our requirement. The point is
that each practitioner must decide which of these allowable molecules (5–5, 7–1, 7–3, etc)
to use. Comparing 5–5 to 7–1, for example, it would make more sense to use 7–1. The 5–5
molecule requires the inversion of a 5 × 5 matrix in order to solve the system at each time
step. By contrast, the 7–1 molecule is just a simple explicit diffusion and thus is easier to
implement and a faster model to compute. Furthermore, it has slightly better error-bound
properties than the former. If the practitioner desires a model that has much better error
properties than 7–1, however, then 7–3 is a possible choice. The trade-off for more stability in
that case is that one has to invert a 7×7 matrix at every time step, which is computationally
more expensive than an explicit diffusion model. Again, it is up to the individual to decided
which quality is more important: a faster model or a more stable one.

5.1.1 Analysis of the Cumulative Error

As we have mentioned, when numerically propagating a Hull-White zero bond using a dif-
fusion algorithm of molecule size n–m, the maximum cumulative error boundary will be of
the form

|E|n−m = αn−mN

(
σ2 T 3

N

)βn−m

,

αn−m = numerical coefficient of Taylor expansion ,

βn−m = power of Taylor expansion .

(82)
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In our study of different diffusion molecules, we found the error boundaries for all of the
molecules in Table 1.

2–1 3–1 /////4–1 /////5–1 6–1 7–1 /////8–1 /////9–1
/////2–2 3–2 4–2 5–2 /////6–2 7–2 8–2 9–2

3–3 4–3 5–3 6–3 7–3 8–3
4–4 5–4 6–4 7–4 8–4 9–4

5–5 6–5 7–5
6–6 7–6 8–6 9–6

Table 1: Molecules we investigated. Slashed entries represent those with anomalous error boundaries and
were not used to estimate α and β.

Excluding the molecules with anomalous errors, it can be shown that the order of the
Taylor expansion for each n–m molecule can be written as

βn−m =
1

2
[even (n, n + 1) + even (m,m + 1)] , (111)

where the function even(· , ·) selects the even number of its pair of arguments. The above
equation can be derived by assuming that all sets of molecules have normalised and symmetric
weights, and then by counting all of the error terms in the Taylor expansion that will be
eliminated by finding these weights and the associated Von Neumann stability condition of
Eq (67).

Unfortunately, there does not seem to be an analytic way to describe the Taylor coefficient
αn−m as a function of an n–m molecule. The best that we can do is a least-squares plane
fit. Using the errors of the molecules in Table 1 (except for those with anomalous errors),
we find that

ln αn−m ≈ 2.98− 1.82n− 0.74m , (112)

with a standard deviation
fit deviation ≈ 2.73 . (113)

This fit tells us that the cumulative error bound for an n–m molecule is more sensitive to
the size of n than to the size of m. In other words, if a practitioner wanted to decrease the
error bound of an algorithm, the general technique would be to change the diffusion molecule
from n–m to (n + 2)–m. Note however, that the deviation of the plane fit is rather large.
Accordingly, moving from n–m to n–(m + 2) might produce better accuracy than the former
change. Here a bit of testing must be undertaken. It is useful to test several molecules, given
the individuals tolerance requirements.

5.2 Optionality and higher-frequency modes

Thus far, we have only analysed the propagation of Hull-White zeros in modified Crank-
Nicolson diffusion models. Of course, the main application of these models is to value
option-embedded bonds (and their risk numbers). This raises the issue of what happens
when a practitioner attempts to propagate a piece-wise continuous curve containing a strike
kink on a lattice.
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As we have observed, a particular n–m model has a regime of allowable tenor and standard
deviations. (The practitioner will choose the model to suit the required tenor and deviations
to be input.) Also we have observed, heuristically at least, that given the maximum allowable
standard deviation for a chosen model, the tenor of a bond, T , is basically the largest
frequency mode that can be propagated without exploding error.

For a bond with optionality, however, the strike kink will in fact introduce higher-order
modes. In other words, in the at-the-money (ATM) range of the payout, there are bonds
of tenor greater than T being propagated. To handle this properly, the practitioner must
be careful. If the appropriate minimal number of modelling time steps is chosen, the higher
modes are damped out and only marginally contribute to the overall error of the model.
This can be empirical tested by testing convergence of the model. One way to do this is to
model a particular American-style option-embedded bond on a particular n–m model, and
then double the number of time steps and remodel. Another way is to run the model twice,
increasing the length of the x-slide on the second run.

From our observations, an acceptable minimum number of time steps is about 200 (see
Section 5.3, below), ie going from 200 time steps to 400 satisfies our convergence criteria.
Also, our accepted x-slide length is five standard deviations – measured in local coordinates
over a time step, see Eq (66) – on either side of a strike. Other practitioners may wish to use
larger values to suit their purposes. We present these, qualitatively, as the minimum values
that we trust. Smaller values will, in general, lead to higher modes of Hull-White zeros that
do not get damped away fast enough.

5.3 Observations about n–m diffusion methods

As we have seen, the 7–1 fully explicit diffusion and the 7–3 modified Crank-Nicolson diffusion
are two algorithms that pass our example requirement of valuing long dated bonds with a
large short-rate volatility and all values of the mean reversion constant. They are relatively
straight forward to implement, though one does need to invert a septa-diagonal matrix for
the latter. This matrix inversion is straightforward and is accomplished by the generalisation
of the tri-diagonal matrix inversion used in the standard 3–3 Crank-Nicolson method[6].

For bonds with embedded optionality, of various tenor or even American style, an efficient
trick is to make the time step spacing chronologically grow exponentially in size. We have
shown experimentally that this requires fewer time steps than an algorithm with uniform
spacing requires. Heuristically, one can understand the reason for this as being that all the
various embedded option tenors, from very short dated to the whole life of the bond, have a
similar number of time steps, ensuring optimal advantage of the central limit theorem. Our
experimentally optimised value for the number of time steps is

Nexp opt ≈ 200 . (114)

Specifically for American options, we note that because of their “always-optional” nature
we cannot do better than using at least N ≈ 200, even by going to larger molecules, eg 7–5.
Molecules larger than 7–3 are more accurate but will generally be slower to implement.
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6 Conclusion

In this work, we have analysed the numerical stability properties of diffusion algorithms
using generalised Crank-Nicolson n–m molecules. In particular, we probed the stability of
the algorithms by modelling long-dated Hull-White zero bonds with large tenor and large
volatility of the short-rate. The main idea was to find molecules that exhibited a desired
level of stability when diffusing the Hull-White zeros. We could then be confident that
the algorithms of these molecules could be used to model option-embedded bonds, such as
American style callable bonds.

During our analysis, we demonstrated that there are two types of numerical stability to
consider: 1) Von Neumann stability, which concerns the relationship between the size of the
time steps, ∆t, and the size of the intervals of the state variable ∆x, and 2) Stiffness, which,
for a given number of time steps, concerns the size of the product σ2 T 3, where T is the tenor
the bond being diffused and σ is the annualised volatility of the short rate.

Von Neumann stability for a n–m molecule was obtained by Von Neumann mode analysis.
For the standard one-dimensional heat equation, one probes Von Neumann stability of an
n–m molecule by diffusing (propagating) Fourier modes

eipx , (115)

where p is the frequency of the mode. After one numerical time step of the algorithm, a
Taylor expansion is performed over the parameter

p∆x , (116)

and the leading error terms are eliminated in order to find the diffusion weights of the
molecule and to optimise the Von Neumann stability. In the case of the standard 3–3
Crank-Nicolson molecule, the algorithm turns out to be unconditionally stable for the heat
equation, ie stable for all values of p.

For the Hull-White equation, however, none of the n–m molecules are unconditionally
stable. Instead, there is an additional stability to consider – stiffness. The stiffness of the
diffusion algorithms arises from the fact that Hull-White zero bonds are the modes to analyse
for Von Neumann stability. In other words, instead of Fourier modes we have

e−aT (t)x , (117)

where

aT (t) =
1

k

(
1− e−k(T−t)

)
,

k = rate of mean reversion of the short rate .
(118)

In this case, the parameter for the Taylor expansion is

aT (t) ∆x . (119)

Noting that Von Neumann stability relates ∆x to σ
√

∆t, and also noting that the function
aT (t) has the upper bound T , we have that error boundary for the Hull-White modes is
parametrised by

σT

√
T

N
, (120)
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where N is the uniform number of time steps in the algorithm. Clearly the upper bound of
the error is sensitive to the values of σ and T , which gives rise to model stiffness. Recalling
that the fractional powers of ∆t = T

N
are eliminated by choosing normalised symmetric

weights in the Von Neumann analysis, we see that the stiffness measure (for a fixed number
of time steps) is given by the product

σ2 T 3 . (121)

Note, however, that stiffness is also controlled by the order of the remaining Taylor expansion
term and by the coefficient of that term. Because of this, the allowable regime of σ2 T 3 is
relative to the molecule used and the practitioners desired model tolerance.

For modelling long dated (option-embedded) bonds with large short-rate volatility, stiff-
ness is extremely important. In particular, given the practitioner’s target bond specifications,
it is likely that the standard 3–3 Crank-Nicolson algorithm will have an exploding error or be
insufficiently fast. Thus, larger molecules and their associated stiffness must be investigated
in order to have a fast, accurate model.

This work raises a few questions immediately. We are not entirely sure of the exact
role that the particular local coordinates we chose, ie (y, ty), are playing in this work. We
will leave this to others to investigate. Our hunch is this general result will hold for any
coordinates chosen to value the derivative, but it would be very interesting to investigate
this assertion.

Furthermore, it seems that the choice of n–m finite-difference algorithm plays a crucial
role. In our example of the 3–1 explicit diffusion algorithm (see Section 4.4.2), we saw that,
given a user-defined error threshold, the model failed with exploding error when passing a
critical value,

σ2 T 3 > 3.6 . (122)

In fact, the error grows so rapidly that, in effect, the critical value of σ2 T 3 acts as a switch:
exceeding the critical value of a model “turns off” successful valuation. This critical be-
haviour raises the question of the performance of other numerical methods, eg finite element
methods, and their interaction with derivative maturities and parameters. It would be quite
exciting to explore other methods.
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